Code loops in dimension at most 8

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planar Posets Have Dimension at Most Linear in Their Height

We prove that every planar poset P of height h has dimension at most 192h + 96. This improves on previous exponential bounds and is best possible up to a constant factor. We complement this result with a construction of planar posets of height h and dimension at least (4/3)h− 2. (G. Joret) Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium (P. Micek) Theoretical Compu...

متن کامل

Code Loops in Both Parities

We present equivalent definitions of code loops in any characteristic p 6= 0. The most natural definition is via combinatorial polarization, but we also show how to realize code loops by linear codes and as a class of symplectic conjugacy closed loops. For p odd, it is possible to define code loops via characteristic trilinear forms. Related concepts are discussed.

متن کامل

Cancellations beyond finiteness in N=8 supergravity at three loops.

We construct the three-loop four-point amplitude of N=8 supergravity using the unitarity method. The amplitude is ultraviolet finite in four dimensions. Novel cancellations, not predicted by traditional superspace power-counting arguments, render its degree of divergence in D dimensions no worse than that of N=4 super-Yang-Mills theory--a finite theory in four dimensions. Similar cancellations ...

متن کامل

Shattering-Extremal Set Systems of VC Dimension at most 2

We say that a set system F ⊆ 2[n] shatters a given set S ⊆ [n] if 2S = {F ∩ S : F ∈ F}. The Sauer inequality states that in general, a set system F shatters at least |F| sets. Here we concentrate on the case of equality. A set system is called shattering-extremal if it shatters exactly |F| sets. In this paper we characterize shattering-extremal set systems of Vapnik-Chervonenkis dimension 2 in ...

متن کامل

On the most Weight w Vectors in a Dimension k Binary Code

Ahlswede, Aydinian, and Khachatrian posed the following problem: what is the maximum number of Hamming weight w vectors in a k-dimensional subspace of F2? The answer to this question could be relevant to coding theory, since it sheds light on the weight distributions of binary linear codes. We give some partial results. We also provide a conjecture for the complete solution when w is odd as wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2016.11.006